GRID
PROTECTION
ALLIANCE

Connectivity and Performance Updates

IEEE 2664-2024 (STTP)

Stt p IEEE 2664 Streaming Telemetry Transport Protocol

Streaming Telemetry Transport Protocol US DOE Project Funding (SIEGate / ASP)
NNNNNNNNNN * Intrinsically reduces losses and latency
@E{ﬁ@m @ DT compared to frame-based protocols
_ A . - Allows the safe co-mingling of phasor data
e Ecctric Power Group [SELIEHE, with other operational data network traffic
ol } £ .
i, OGE W Sk Detailed metadata exchanged as part of
2 Energy = 2 @ Utilicast prOtOCOl

P reacnanr CIEBRGR ercots wo s soommnak | ¢ INncludes lossless compression to reduce
bandwidth utilization

ErPR |, T SGunvesyol (‘w OSl:ot. BRIDGE
seAGETME PingThings € ™ T « Security-first design with strong
S L = AL Consulting Engineers MEHTA TECH, INC.

authentication and option for encryption

STTP Difference: Scalability

[
o

ZONEYA)

13 2 |EEE C37.118 V1 & guration
frame size 65K). A second
. strez st be created
\ Zoner3 2 \;\«\-\xs cased[data 1oss and fatency.

73
=}

Purpose-huilt / allocated networks
typically required
STTP handles from

Data loss and laa %8'?K1Iﬁﬁgﬁspoints per

begin to appear. .
& p. second. per conneé:tlon

Network tluning ma ereci\uwg
n common hardware.

1 lIssues, if gny, are easy to resolve

B
o

W
o

nN
o

-
o

IEEE C37.118 Configuration Frame Size (kB)

0 100 200 300 400 500

Number of PMUs (at 16 signals per PMU)

0 - 3000 3500 4000 4500 5000
0 50 15(200 250

Points Per Second (000's)

© 2024 Grid Protection Alliance

STTP Open-Source Implementations

httPS:I / gith u b.COITI/Sttp Work continues to make

N ew Feat ures l Streaming Telemetry Transport Protocol STTP implementations

100% compatible with
IEEE 2664-2024

Open Source

All STTP reference
implementations are
Open Source Software

- (OSS) published on
.NET STTP Implementation e

https://github.com/sttp/dotnetapi permissive MIT license.

Go STTP Implementation

STTP Connection Tester
https://github.com/sttp/connection-tester

New Python Code: Concentration

pyapi/examples/groupeddatasubscribe/main.py at main - sttp/pyapi

» Grouped Data Subscribe
 For a collection of incoming signals, applies time alignment operations
providing synchronized data to a consuming algorithm

 Allows custom Python algorithms to operate on time-aligned
groups of data received over STTP

 This allows grouping of data by timestamp in Python code
* Also known as data concentration

 STTP does not time align data natively; it sends data as it is
received to speed delivery

* This leaves concentration function to the consuming application

https://github.com/sttp/pyapi/blob/main/examples/groupeddatasubscribe/main.py

STTP Compression Algorithm: TSCC

* |EEE 2664 Standard (STTP) includes a compression algorithm:
* Time Series Special Compression (TSCC)

* Tuned for Synchrophasor Data and Streaming Data

 Algorithm uses multiple algorithms for different time-series
elements, with special focus on “Value™:
* ID
* Time
 Value (differential / 7-bit encoding / last result cache / zero handling)
* Quality

TSSC Testing with Point of Wave

« Compression Is very good for streaming phasor data
* Low latency, low CPU impact, and fast

* Tests with streaming audio data also compressed well
« Streaming signals at 44100 Hz data compressed well

« TSSC does not perform as well with 960Hz point on wave data
« Multiple channels of test data were recorded at 960Hz

TSSC Best for Slow Rate of Change

« TSSC performs well for data sets where there is a
slow gradient of change:
* This works well for phasor data (30/60Hz)
« This works well for audio data (44100Hz)

 What makes 960Hz special?

POW Data

* Within 16 measurements, you
move through 360 degrees -

Non-linear Data

New STTP Compatible Algorithm:

Harmonic Differential Compression

« ~25% compression ratio (i.e., 75% reduction in original size)

* For the current implementation, some default parameters (all
configurable):

e Harmonic count: 8
» Supplemental compression algorithm: LZMA

o Buffer size: 64K

* Window size: 2 cycles
* Frequency estimation: Fixed (options for zero crossing / FFT)

« Target compression ratio: 26%

* Optimizations:
« Caching of calculated omegas — reduces calls to trig functions
 3/7/13-bit encoding

Other Protocols

« |[CCP
« Sending and receiving SCADA data into GPA Tools
 New adapters available in EE versions
 Testing new configuration scripts (Python)
 DNP-3
« Updated configuration scripts (Python)

« Existing adapter - Input
« Under development - Output

* |EEE C37.118.2-2024

« GPA participated in standard process, recently published
* Will be implementing new protocol soon

Grid Solutions Framework

O Grid Solutions Framework

O Comvamasnn

l yﬁl rqunmmlal
o i i

L

OIS

e e

G 5F Prascs Wokacode a0

Analytics
Alarming Module
Bad Data Detection Core
Linear State Estimatation (new
Numerical Analysis Extensions
SlI Unit Primitives

f Out

" Byte Encodnng

Checksum Validation
Communications Library
Data Encryption

Phasor Data Stream Parsing
Pub/Sub Framework
Stream Management

String Manipulation

Utility Protocol Parsing

Data Storage
Data Historian
Database Abstraction
Metrics Historian

System Management

Configuration Management
Error Management
Performance Monitoring
System Event Logging
System Management
Thread Management

Core Services
Adapter Framework
Async Data Processing
Bit Manipulations
Installation Framework
Interprocess Synchronization
Native Core Extensions
Object Pooling
Security Subsystems
System Services Framework
Time Series Framework
Ul Base Services
XML Extensions

GRID PROTECTION ALLIANCE

From GSF to Gemstone
D> @Gems’rone

« Migrating code from .NET Framework to .NET 8 (a.k.a. Core)

* Makes code natively cross platform, supporting:
* Windows
 Linux
¢ OS-X
 Impressive performance boost!
« ASP.NET Ul testing boasts near 40% improvements many some cases
 Allows ready-to-run native executable deployments
« Complete backend code overhaul
* New service and security architectures
« Adding nullable language checks to code for improved safety

Ongoing work with New Versions

« Based on new cross-platform openPDC, running on Linux
natively, allows unique deployments

* New version runs on existing substation hardware with tiny
hardware constraints

 Allows reuse of existing hardware for new purposes:
 Local storage, allowing data gap filling for com losses
 Application of new protocols (STTP) to reduce bandwidth

* Deployment of distributed calculations, e.g.:
* Power
« Sequence Calculations
 QOscillation Detection

New openHistorian Performance Test Results

» Extraction testing using the C# socket based OH API writing
data to a CSV

Total Points: 2.00
* Extracted CSV data size: 7.17GB _Polnt Freq: 4410000 | He
Points Per Sec: 88,200.00
. . Time Range: 3,600.00 | Seconds | (1 Hr)
° Query Tlme RedUCtlon Extracted Points: 317,520,000.00 Extracted Points Per Sec:
. . Old Query Time: 90.02 | Seconds 3,527,216.17
° Old Query Tlme' 9002 Seconds New Query Time: 69.70 | Seconds 4,555,523.67

* New Query Time: 69.70 seconds
* Time Reduction: 20.32 sec (=22.58%)

* Throughput Improvement
 Old Extracted Points Per Second: 3,527,216.17
* New Extracted Points Per Second: 4,555,523.67
* Throughput Increase: 1,028,307.5 points per second (=29.15%)

Performance Results Summary

* The transition to the new openHistorian system, querying
the exact same data / time range, results in:
 Significant reduction in query execution time (approx. 22.6%)
* Notable increase In data processing throughput (approx. 29%)

This improvement can be classified as a major
performance enhancement for openHistorian,
yielding faster computations and more efficient data
handling capabillities which is crucial for high-
frequency data processing.

	Slide 1: Connectivity and Performance Updates
	Slide 2: IEEE 2664-2024 (STTP)
	Slide 3: STTP Difference: Scalability
	Slide 4: STTP Open-Source Implementations
	Slide 5: New Python Code: Concentration
	Slide 6: STTP Compression Algorithm: TSCC
	Slide 7: TSSC Testing with Point of Wave
	Slide 8: TSSC Best for Slow Rate of Change
	Slide 9: New STTP Compatible Algorithm: Harmonic Differential Compression
	Slide 10: Other Protocols
	Slide 11: Grid Solutions Framework
	Slide 12: From GSF to Gemstone
	Slide 13: Ongoing work with New Versions
	Slide 14: New openHistorian Performance Test Results
	Slide 15: Performance Results Summary

